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DEVELOPMENT OF METHODS OF EVALUATING EXTENSIONAL PROPERTIES OF POLYMER

SOLUTIONS FROM MEASUREMENTS OF SHEAR

1. INTRODUCTION

Large extensional flow components occur in many important tech-

nological processes of liquids. In general, any processing of a liquid

using converging or diverging flow will correlate with some extensional

properties of the material. On the other hand, most instruments for es-

tablishing the rheology of liquids are based upon measurements of simple

* ' . shearing flows. The few intruments which measure extensional properties

of liquids are designed to handle only the thickest of liquids such as
" . polymer melts suitable for spinning into synthetic fibers. There are

serious obstacles to adapting these devices to measure polymer solutions.
It would be a valuable achievement, therefore, to find a technique of

inferring the extensional mechanical properties of polymeric fluids from

measurements of shear. We report here a preliminary exploration of the

possibility of one such technique to be applied to polymeric solutions

of moderate concentration.

There is no purely geometrical relation between the shear

properties of a material and the extensional properties. To make a

connection, some sort of constitutive conditions must be invoked. For

polymeric materials, it is known that realistic constitutive equations

are of the hereditary type, that is, the state of stress in the material

is taken to depend on the whole history of the deformation of the material.

Among the possible hereditary constitutive equations, in recent years the

BKZ model 1,2,3 has proved the most effective in dealing with amorphous

polymers and polymer solutions. As will be explained in the next section,

the BKZ model has the interesting property that stress relaxation measure-

ments are sufficient to determine the complete mechanical behavior of the

material being modelled. Furthermore, isochrones of these stress relaxation

*measurements have a mathematical character identical with that of a strain

*energy function of an elastic medium. Indeed, the BKZ model can be used

to describe both the entropic elastic mechanism which is the source of

rubber elasticity and the mechanisms producing viscous losses in fluids.

7
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This fact underlies the success of the model in dealing with the mechanics

of polymeric materials. It is the physics of the entropic mechanism which

suggests a connection between shear and extension. Recent work in rubber

elasticity has shown that the entropy of defornation is, to a renarkable

degree, a superposition of effects from individual principal stretches
* 4

without cross terms. Incorporating this idea with the BKZ model allows

one to relate the mechanics of extension to the measurements in shear.

These matters are discussed in the following section.

The most direct method of applying these theoretical ideas is

through stress relaxation measurements in shear. Measurement of stress

relaxation of fluids poses certain practical difficulties which limit

the range of concentration for which it was possible to obtain good data

on solutions. One of the important results of this work is the elucidation

of these limitations. The experimental details of the measurement of

stress relaxation for five different solutions are given in Section 3.

Section 4 discusses the numerical treatment of the measurements. It

was found that a very careful and elaborate smoothing of the raw data

is necessary in calculating accurate and reliable values of a material

function. This process is crucial to the success of this technique.

It is illustrated for one sample in Section 4.

Section 5 lists some conclusions and recommendations for

continuing work which arose out of this preliminary study.

I p8
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2. THEORETICAL BASIS

The BKZ model 1 was proposed almst 20 years ago to model non-

linear, time-dependent viscoelastic behavior of materials such as elasto-

mers, polymer melts and solutions. Since that time, it has proved to be

a practical and accurate model for a wide range of materials and deforma-

tion histories. In the case of isothermal flows of homogeneous incompres-

sible fluids, the model may be sunmarized in the following equation. 3

t

G -P=ij + 2 [Ui( B(t,T),t-T ) Bj -U( B(t,T),t-r ) B..i 1 dT
ij _Uij 2 1j(1

I= trB, II= trB ,det B=1

where aij is a component of true stress, p is an arbitrary scalar

pressure, I and II are the first and second scalar invariants of B.

is a variable of integration which as the significance of time in the

past with respect to the present time t , B.. is a component of B

the left relative Cauchy-Green tensor and B.. is a component of its in-iJ
verse. In this equation U is a scalar function of time and of the

scalar invariants I and II respectively. Note that B and thus

I and II are calculated from the deformation which maps the configura-

tion at time T in the past into the configuration at the present time

t and therefore they are implicit functions of these times. The function

of U is constitutive, that is, it carries a complete description of the

mechanical behavior unique to the material it represents and, therefore,

it must be measured for each material for which we wish to apply the model.

When, for any material, U is completely known as a function of the three

dependent variables of the deformation history (I, II and T ) the me-

chanical behavior of the material is completely specified. U has the

character of a time-dependent free-energy.

Stress relaxation experiments play a very fundamental role in

BKZ theory. The infornration carried by the constitutive function U

may also be expressed in terms of stress-relaxation functions. Let aSR(B,T)

represent the stress relaxation function, that is, the residual stress

in a specimen at a time T after being subjected to

* Any scalar function of the tensor B is equal to a function of the

scalar invariants of B

9



and held at a deformation (represented by tensor B) from a stress-

free relaxed state. Then, equation (1) may be re-written in terms

of this stress relaxation function as follows

t
a(t) = -pl + a s(B(tT),t-T) dT (2)

This equation says that the stress in a material at a time with any

history of deformation is a superposition of stress relaxatior func-

tions for deformations representing the change in configuration from

times in the past to the present and for relaxation times of the cor-

responding time interval. In other words, one can completely specify

the mechanical behavior of a material by measuring the stress-relaxation

function OSR(B,T) for all the deformrations B and all time inter-

vals T

The stress relaxation function, considered as a function

of deformation but at a fixed relaxation time is known as an isochrone.

An isochrone of a BKZ material has the character of a strain energy

function of finite elasticity theory. One can view the characterization

of the mechanical properties of a BKZ material as the specification

of a time-dependent elastic strain energy function corresponding to

a complete set of isochrones of all stress-relaxation functions. Thus,

the ideas and theorems of finite elasticity theory can be applied.

geb In finite elasticity theory, the properties of a material are

given by a strain energy function. In the general case, when the strain

energy function is not specified further, the behavior of the material

in extensional deformations cannot be inferred from its behavior in shear.

Recently, Valanis and Landel 4 have proposed a special form of elastic

strain energy function which they showed to model accurately the behavior

of elastic materials such as natural rubber and other elastomers. The

Valanis-Landel form of elastic strain energy function carries the cons-

titutive information on the elastic behavior of a material in the form

of a simple scalar function of one variable. This function can be
5

evaluated either from shear measurements or from extensional measure-

ments5 6 Consequently, in the case of a Valanis-Landel elastic material

10
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the behavior in extension can be inferred from the behavior in shear.

In Valanis-Landel elasticity, the strain energy function of finite elas-

ticity W is given as follows:

W = w(A) + w(P) + w(v)
(3)"2< APV =

where w(x) is the constitutive function (we shall call the V-L function)

and Xlj,v are stretches in the three principal directions of the defor-

mation at a point. The second of the equations expresses the fact that

the material can be considered incompressible.

To produce simple torsion in a right circular cylinder of an

incompressible isotropic elastic material, it has been shown that a tor-

sional moment T must be applied to the ends of the samrple7

T = 40i (Wi+W 2) r dr (4)

and in addition a normal force, N , must be applied parallel to the axis

of the cylinder.

N = -2 2 f (W1+2W2) r3 dr (5)
0

Here * is the angle of twist per unit length, R is the radius of the

cylinder, W1 and W2 are partial derivatives of the strain energy

density function with respect to the first and second invariants of the

deformation tensor. When these equations are put in terms of the V-L

"- function they become
• 42

" T = 2ip[f - [ Xw'(X) - 1/X w'(1/A)] r dr (6)

R 2

SN [(A -2) w'(A) - (2A -1) i/A w'(/)1 r dr

%... (7)

_,-,;11
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where A is a principal stretch greater than unity given as

a function of radius by

A(r) = (( 2 24) +r) (8)

These equations are to be used to evaluate Aw'(A) for the elas-

tic material. To proceed, it is necessary to find a method of calcul-

ating values at a point from values integrated over the cross section

of the cylinder. The procedure of Kearsley and Penn 8 will accomplish

this. Using this procedure and taking derivatives of equations (6)

and (7) we obtain
4

SXW4-OX2 1(3T+T) (9)* A~)w' (A) - 1/A w' (l/) -*~ (Tip

( -2) Xw'(X) - (2X2-1) I/A w(I/A) 2 4 2 (2N+ N ) (Io)

where T, and N4'  are the slopes of plots (isochrones) of shear stress

and normal stress, respectively, versus the twist. Equations (9) and (10)

can be solved for xw' (X) andl/Xw'(I/X)for each value of A , where

2 2-x ((2R2+4) + pR) (ii)

These equations (9), (10) and (11) can be used to evaluate

Aw' (A) from data on torque and normal force as a function of twist.

When Xw' (A) is known for all A , the strain energy function can be

constructed.

When the V-L function is measured for all relevant values of

A by this method (or any other method), the elastic response can be

calculated for any deformation. For example, if a strand of material of

initial cross-section A is stretched to A times its unstretched
0

length, the force F -required is given by

F (Xw'l(A) - - X-)) (12)

Similarly, if a square sheet of initial thickness t and unstretched

" , , -, ", % ", - -. , ", • . .,%4 .,, .- * o. ,'', .. * •* . . .. ,.4
•
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side L is stretched biaxially to a larger square of side A L, the forces

F acting on each side are give by

F~ Lt Xw X_ -,X-2X(w'(X) - -2 w' )) (13)

Thus the extensional properties of an elastic material of the Valanis-

Landel type can be measured from experiments on torsion.

In modelling a polymer solution as a BKZ fluid, we take the

isochrones of stress relaxation to correspond to an elastic strain energy

of the Valanis-Landel type. Then stress relaxation experiments in tor-

sion may be used as shown above to calculate a V-L function for each

isochrone. In this way, we find a function Aw' (x,t) of two variables

(stretch and time) which completely characterizes the non-linear time

dependent behavior of the solution. For instance, in extension of a

strand of solution, in light of equation (12) for an elastic material,

we can write for the viscoelastic polymer solution
t _, -.

F(t) = A(t) [Xw'(X,t-T) - 2 '(X-, t-T)] dT (14)

= L(t)/IL(X)

where F(t) is the force at time t extending the strand, L(t)

is the length of the strand at time t and A(t) is the cross sectional

area of the strand at time t. To use this equation, the history of

the length of the strand is observed from an equilibrium rest position

up to time t. This information is :hen used in equation (14) to cal-

culate force. We could also have written down the obvious generalization

of equation (13) to apply to homogeneous biaxial stretching of a sheet

of viscoelastic material. In fact, we can write such equations for any

deformation history. The important point in this model is that the

V-L function measured from experiments on torsion as a function of two

variables (stretch and time) contains all the constitutive information

necessary to determine the stress for any deformation history of the

material

1?
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3. EXPERIMENTAL

3.1 FquipmentI~Stress relaxation data in torsion was measured with a Rheo-

metrics Mechanical Spectrometer RMS-7200. In general the calibration

procedures followed were those given in the operation manual. However,

it was found that the angular position of the torsion head was not a

linear function of the applied voltage. Consequently, a technique was

worked out to calibrate postion at small angles (+ 100) by observing

the deflection on a scale attached to the wall of the laboratory of a

spot of light reflected from a mirror fixed on the torsion head. For

larger angles, calibration was done directly with a pointer attached

to the torsion head reading against a centimeter scale wrapped around

a fixed cylinder.

The torsion was achieved between circular plates of 7.22 cm.

diameter. The lower plate had a relief well and outer retaining wall

to keep extruded material from dripping. As mentioned in the section

on procedures, this extruded material was probably the cause of the

most serious errors in measurement.

As one check on the operation of the Rheometrics, steady

state viscosity of a standard viscosity oil (OB oil, 267 poise at

23.50 C) was measured and found to be correct to within better than

5%. Since temperature was not controlled, this accuracy was considered

to be adequate for our purposes.

3.2 Solutions

Data was run on solutions of polymethylmethacrylate (PMMA. S-5522)

and of Elvacite in diethyl malonate (DEM). The concentrations used were

determined by the practical requirements of the Rheometrics measuring

device. If the solution was too dilute, the forces generated during defor-

mation were too small to allow accurate data. On the other hand, if solu-

tions were too concentrated, it became impractical to load the solution

into the proper cylindrical space for measurement without introducing signi-

ficant air bubbles into the samples. The usable range of concentrations had

to be established by trial and error tor each polymer. For PMMA

' 14
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this range was from about 4% to 6% and for the Elvacite it was from about

19% to 24%. Some initial difficulties in dissolving reproducible samples

turned out to be caused by improper cover liners on the wide Muth jars

used. The technique finally used consisted of adding powdered polymer

to solvent and warming and mixing the resulting suspension by rolling in

a sealed glass jar for about a week. The resulting solution showed

no sign of inhomogeneity.

Data had to be run within a day of loading the measurement

apparatus to keep the evaporation of solvent within acceptable bounds.

Of course, all solutions were kept in sealed jars during and after

mixing except while measurements were being taken. Table l. lists the

solutions for which relaxation data was taken and the V-L function

subsequently calculated.

Table 1. Composition of Solutions

Designation Solute in 100cc of DEM

P-4 4.163 gm PMMA (S-5522)

P-5 5.117 gn "

E-20 20.012 gn Elvacite

E-23 23.086 gm

E-25 25.012 gm

3.3 Procedure

Solutions to be measured were sucked up with a barrel and

plunger device and then extruded ontc the lower plate of the torsional

apparatus. Great care was taken t0 a.inimize the number of air bubbles

introduced by this operation and ty, material was allowed to stand for

several minutes after extrusion so that most of the air bubbles could

come to the surface and be removed. The upper (conical) plate was then

:i slowly lowered until the solution just began to extrude all around the

edge of the platens. Since about 15cc was a typical load of solution
and the radius of the platens was 3.61 cm., the spacing when the sample

just filled the space between the platens was typically of the order

of 3 millimeters. It was impossible to trim the excess sample which

15
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extruded because of its high elasticity. Probably, the chief source of

error in the measurements was the effect of this excess material.

All stress relaxation measurements on a given loading were

taken within a day to avoid effects caused by evaporation of solvent.

y Measurements repeated within a day gave no systematic variations. Torque

and normal force were recorded simultaneously on a chart recorder during

relaxation. Data were then measured by hand from the recording chart

for a range of times from 1 sec up to as much as 30 seconds. It was

found that at least 15 minutes had to be allowed for relaxation to

equilibrium between runs in order to eliminate the effects of earlier

* runs and to assure reproducible data.

It was necessary to do about six relaxations at each value of shear

in order to map out a complete relaxation. This is because different

sensitivities of the force and torque scales had to be used to get ac-

curate data on different parts of the relaxation curve. Considerable

patience was required.

Table 2. lists the values of maximum shear for which data

were taken for each solution

Table 2. Values of maximum shear for relaxation

measurements

Solut ion Maximum shears

*P-.4 3.12 5.72 9.48 11.60 14.24 15.24 19.98

P-5 4.56 5.68 9.08 10.90 13.7.4 19.72

E-20 4.44 5.36 7.60 9.14 12.40

*0 ~ E-23 2.82 3.68 5.42 6.54 7.36 8.68 9.78

E-25 3.70 4.72 6.72 8.66 11.28 11.62 14.26

16



4. CALCULATIONS

Figure 1 shows one plot of stress relaxation for solution P-5

at a maximum shear of 13.74. The maxim)im shear, YM , is related to the

twist * by

YM =  R~M ~R(15)

T he plot is qualitatively representative of the data on any of the samples

at fixed shear. To obtain the data of this figure, five individual

relaxation experiments were done, each at the same fixed maximum shear

but with different settings of sensitivity on the torque and normal force

meters to measure overlapping sections of the curve. Error, bars have

been drawn in at a few points to show how the accuracy of the data deterio-

rates for relaxation at long times. This problem results from electrical

and mechanical noise in the measurement system. An isochrone can be cons-

tructed from a set of such relaxation curves over a range of shears.

Figure 2 shows isochrones of torque for solutiion P-4 for times of relaxa-

tion ranging from one second to twenty seconds. These isochrones were

constructed by taking values of torque for some fixed time of relaxation

but at various shears and plotting them versus shear. The curves have

been drawn by eye. One can get an idea of the quality of the data from

Figure 2. The fact that we can draw smooth curves consistent with the

data is very reassuring (and vital to the project, as we shall see) because

this cross-plotting is very sensitive to errors.

The quantities To and N of equations (9) and (10) are re-

lated to the slopes of the isochrones by the equations

aT 3NT= R T N = R ay (16)YM M

We first attempted to estimate the slopes by a numerical method rather

than by taking them graphically from the plots. Given a sequence of

isochronous values of torque, for instance, arranged according to the

monotonically increasing shear, the slopes of the end points were taken

to be that of a straight line to the neighboring points in the sequence.

.°1"
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For interior points, the slopes were taken as the averages of scopes

of such lines weighted by the inverse of the intervals to the next

points on the axis. With values of the isochrones and slopes of the

isochrones, the V-L function can be calculated from the equation

X12 2 2 2)w'(Xt) [ 2 4 [2(X -1)(2N+pN ) + (X +2)(2 T +3pT)]
X 2m2R4 (1)

which can be derived from equations (9) and (10). In this equation

T and N are considered as functions of relaxation time and of twist.

For each twist two values of X can be calculated, viz.:

X = ((2R2+4)3 + R) (18)

Calculations of the V-L function with data treated only as described

above generated scattered points which did not determine a smooth curve.

The difficulty was eventually traced to insufficient smoothing of the

data. The term in N and its derivative in equation (17) is of opposite

sign but approximately the same magnitude as the term in T and its

derivative. Consequently, the calculation of the V-L function involves

the small difference between large quantities. What is more, these

large quantities themselves contain the calculated slopes of experimental

data. For this reason, very careful and sophisticated calculation methods

are required.

Ultimately, the following procedure was adapted. The raw data

points were plotted on logarithm plots and a smooth curve consistent

with the data was drawn by eye. The slopes of these curves at the values

of Y of the data points were calculated graphically. The values of slope

for fixed y were then plotted versus relaxation times. By an iterative

process, the original data was smoothed until the calculated slopes for

fixed y also fell on a smooth curve systematically changing with

This process was necessarily a very tedious one. Figure 3 shows the re-

sults for solution E-23 as a plot of the derivative of the V-L function

for four times of relaxation spaced logarithmically. In Figure 4 we show

18
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a part of one of the curves of Figure 3 plotted with the corresponding

results from the first numerical calculation of slopes. It is very clear

from these two figures that the conplex and tedious procedure of treating

the raw data is necessary and sufficient to produce a reasonable plot of

the derivative of the V-L function.

Since the slope of the V-L function is negative for values of

A less than one, Figure 3 is a plot of the absolute value of the

derivative of the V-L function. By definition, this quantity is zero

at X of one so that there is a corresponding point at minus infinity

which cannot be shown. The smallest values for X less than one at

large relaxation tims may still be showing "noise" in the plots of Figure

3. From a practical point of view, this is not serious since in calcul-

ations of stress the function plotted in the figure always appears in

combinations involving two values of X . For extensions, for instance,

there will be a X greater than one as well as a X less than one.

In that case the "noise" of the x less than one will not seriously

affect the combination.

Table 3. gives a set of smothed data used in calculating one

of the curves of Figure 3.

Table 3. Sample Smoothed Data for Solution E-23

at time two seconds

T N slope log T slope log N W1  W2

2.82 67 31.5 .663 1.35 .134 .0145

3.68 77 44.6 .388 1.26 .111 .0097

5.42 82 70 .002 1.10 .064 .0133

6.54 81 85 -.131 .959 .049 .0113

7.36 79 95 -.249 .903 .039 .0115

8.68 76 109 -.335 .795 .030 .0098

9.78 73 118 -.410 .740 .024 .0085
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5.CONCLUSIONS AND RECOMM!vENDATIONS

A model of the mechanical. behavior of polymer solutions has been formulated

which can be used to infer extensional properties from measurements of

shear. The model is consistent with our experience of measurements and

phenomenainser

Measurements of five solutions show promise for the practicality of

this technique but suggest that further experience is necessary.

There are practical experimental limitations in measuring stress relaxation

which limit the range of concentrations of a polymer solution which can

be measured. Therefore, methods of extrapolation in concentration need

to be worked out.

Very careful and complex treatment of the data is needed in order to

get good results. More efficient methods of accomplishing this treatment

should be worked out. If possible, a computer program should be developed

to accomplish this task.

.7..'.The technique should be tested for its applicability to extensional flows.

For this purpose, theoretical and exper'imental studies of some convenient

extensional flow should eventually be initiated.

Ultimately, through measurements by the method proposed here, various

features of the V-L function selected from theoretical and experimental

considerations should be examined for their effect on the stability of

extensional flows. In this way, quantitative measurements can be

-- correlated with data on breakup of je'.s.
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-V. Raw Data for Solution P-4

s'hear 3.12 5.72 9.48 11.6 14.24 15.54198

time units TORQUE

1 63.5 108 185 189 214 345
2 47.0 73 94 110 121 124 175
3 39.0 57 70 84 90 95 120
4 34.5 48 56.5 63.5 70 73.5 95
5 29.2 41.5 47.5 55 59 60 77
6 26.2 37 41.5 47 49 50.5 63
7 23.8 32.8 36.5 41 42.5 43.5 52
8 22.8 30 32.5 36 37.5 38 45
9 21.4 27.8 29.5 33 32.5 34 39

10 20.0 25.8 29 28 30 30.5 35
is15.7 19.6 18 20.5 23.6 20.6 21

20 12.9 15.2 114.2 15.5 16.2 15.6 15.5
25 11.0 12.8 11.9 12.0 13.4 12.4 11.9
30 9.8 11.0 10 10 10.4 10.5 9.5
40 8.0 8.4 8 9 7.4 7.7
50 6.8 6.6 6.2 6.0 6.2

NORMAL FORCE

1 97.5 301
2 22.5 58.5 132 173 275 285 575
3 18.0 49 97 127 198 205 360
4 15.2 41 76.5 104 151 155 265
5 13.3 34.7 60.4 91 120 127.5 226
6 12.2 30.3 55 73 101 107.5 182
7 10.9 27.3 48.5 68.5 86 96.5 152

*8 10.1 25 43.5 61 76 84.5 132
9 9.5 23 39.5 55 68 75 113

10 8.55 21.3 35.5 50.5 61 67.5 99
15 6.3 16.4 24.5 35 41 45 60.5
20 5.75 13.2 18.6 27 30 35.5 43.5
25 4.85 11.2 15.0 22 25 26.5 33
30 4.10 9.7 12.5 18.5 22.3 21.9 27
40 3.25 7.6 8.4 14.5 16.7 16.1 19.5
50 2.70 6.4 7.5 13.2 12.7 15

Torque in gram-centimeters, norml force in gramns, time units at 0.472 seconds.
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Raw Data for Solution P-5

- shear 4.56 5.68 9.08 10.90 13.74 19.72
time units TORQUE

1 186 200 300 350 450 6202 131 143 192 235 286 410
3 107 116 155 180 238 300
4 92 100 128 151 180 2305 82 89 113 130 152 190
6 72.5 80 104 114 130 160
7 68 71 93 101 117 142
8 63 65 84 91.5 105 127
9 58.5 61 77 83 95 112

-0 55.5 58 71.5 77 87.5 100

v % 
15 

42.4 
45 

54 
56 

61 
6720 35.8 37.5 43.5 46 47 47.5

25 31.6 32.5 36.5 39 36.5 35.8
30 27.8 29 32 34.5 31.6 29.2.. 4 0 2 3 .2 2 4 .5 2 5 .5 2 7 .4 2 3 .8 2 2 .1
50 20.1 20.6 21 22.8 19.7 17.7
60 18.0 18.2 18.5 19.8 16.7 14.7
70 16.2 16.2 16.5 17.4 14.7 12.7
80 14.9 16 13.5 11.390 14.4 12.2 10.3

100 13.2 11.2 9.3
".': 00

11 12.6 10.0 8.7150 7.8200 6.6

NOPMNL FORCE
1 112 158
2 79 115 232 320 553 1110
3 65 97 190 260 413 7804 56 84 163 222 530 610
5 50 75 143 186 283 507
6 46 67 128 162 243 4277 42 62 114 145 216 372.5
8 39 57 105 130 194 3309 37 53.8 97.5 120 177 295

10 35 50.5 90.5 Ill 163 267.5
15 27.5 39 68.5 82 116 172
20 23 32.8 56 65 90 128
25 20 28 47 56 73 103
30 17.5 25 41 49 61 8440 14.3 19.6 33 38.5 46 62.5
50 12.3 16.6 28.3 32 37 49.5
60 10.6 14.4 23.8 27.5 31 4170 9.5 12.8 21 25.5 27 35.5
80 11.4 22.8 23 28

- _ 90 20.5 21.5 24
100 18.8 19.7 21.5
110 17.2 17.9 19.5
150 13.3
2 0 0 1 0 .3

Torque in gram-centimeters, norml force in gran, time units at 0.472 seconds.
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Raw Data for Solution E-20

shear 2.22 2.68 3.80 4.57 6.20

time units TORQUE

2 69 70 60 64 64
3 41 38 37.5 38 36
4 27 24 24.5 25 22
5 20 18 17.5 18 14.6
6 15.8 13 13.5 13.5 10.2
7 12.0 10 10.3 10.5 8.2
8 9.8 7.9 8.6 7.8 7.0
9 7.8 6.3 6.9 6.3 5.7

10 6.8 5.2 5.6 5.2 4.8
15 4.0 2.4 2.5 7.3 1.9
20 2.8 1.6 1.5 1.1
25 1.2

NORMAL FORCE

2 42 59 85 115 144
3 32 34 48 57 70
4 23.2 22 29 34 43
5 15.6 15.5 20 24 31
6 11.7 10.8 15.5 17.5 22.5
7 8.6 8.8 12.0 13.4 18.5
8 6.8 6.8 9 10.4 13.5
9 5.3 5.4 8.2 8.0 10.5

10 4.0 4.4 5.8 6.4 8.5
15 1.8 1.8 2.4 2.6 3.5
20 0.8 0.8
25 0.4

Torque in gram-centimeters, normal force in grams, time units at 0.472 seconds.
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Raw Data for Solution E-23

shear 2.82 3.68 5.42 6.54 7.36 8.68 9.78
time units - K(uL

1 386 380 352
2 140 144 189 216 183 180 174
3 91 109 117 122 115 110 104
4 67 77 82 86 79 75 73
5 52 56 63 66 59 57 56
6 43 45 49 50 47 45 43
7 34.5 37 40 39 38 37 35
8 29 30 32 32.5 31.5 30 29
9 24.5 25.5 27 27.4 26.4 25 24

10 21.5 22.1 23.3 23.2 22.6 21.5 20
15 12 12 13.8 1.2.5 12.3 11o 5 11
20 6.8 7.6 8.7 7.5 7.5 7.2 6.9
25 4.8 5.0 5.7 5.3 4.9 4.9 5.1
30 3.5 3.6 4.1 3.9 3.5 3.5 3.8
35 2.7 2.4 2.5 3.0 2.5 2.5 3.1
40 2.4 2.4

110NORMAL FORCE
1 140 203 390 505 750 940
2 69 107 166 2n6 235 280 300
3 44.5 61.5 105 116 137 163 175
4 31.5 44.8 70 82 94 109 117
5 24 33.3 53.5 62.5 68 80 87
6 19 26.3 41 53.5 54.5 62 67
7 15.4 21.8 33 39 43 50 53
8 12.8 18 27.5 32.8 36.5 41 43.5
9 10.8 15.1 23.5 27.8 30.3 33 36.8

10 9.5 12.8 20.3 23.7 26 29 31.3
15 5 6.8 10.6 12.5 13.4 15.2 16.2
20 3.2 4 6.7 7.6 8.3 9.2 10
25 2.2 3.8 4.4 4.9 5.4 6.2 6.6
30 1.5 1.9 3.1 3.6 3.7 4.4 4.8
35 1.1 1.5 2.3 2.6 2.6 3.2 3.4
40 1.9 2.7 2.6

S.' Torque in gram-centimeters, normal force in gran, time units =t 0.472 seconds.
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Raw Data for Solution E-24

shear 1.85 2.36 3.36 4.33 5.64 5.81 7.13

time units TORQUE

2 318 348 368 390 385 374 356
3 218 232 254 276 255 240 232
4 163 184 191 194 187 182 162
5 130 142 153 150 146 135 123
6 108 115 124 120 115 107 98
7 92 97 103 100 93 89 80
8 78 82 90 84 80 73.5 67
9 67 72 75 73 70 65 58

10 59 62 66 64 60.5 56 50
15 35.4 37 38 36 35.0 33 29
20 24.2 24.8 25.5 25 22.3 22 21
25 17.8 17.2 19 18 16.8 16 14.8
30 13.0 14.5 14 13.0 12.3 11.0
35 10 11.5 11.4 10.8 9.8 9.0
40 10.8 9.0 8.0

NORMAL FORCE

2 210 280 533 610 700 875 1060
3 135 194 328 398 452 520 590
4 101 142 230 288 317 358 398
5 80 110 178 215 237 265 290
6 64.5 89 140 174 190 207 227
7 54.3 73.5 119 143 155 169 189
8 45.9 62 108 120 130 141 158
9 39.3 53.5 86 102 ill 121 136

10 34.3 47 74 98 97.5 107 118
15 19.4 26.5 42 49 54.8 60.5 65
20 12.5 17 27 32 34.8 38.5 42
25 8.5 11.8 18.5 22.5 24.3 27 29
30 8.3 13 16.3 17.3 20 21.5
35 10 12.3 13.3 15 16.5
40 9.5 10.0 11

Torque in gram-centimeters, normal force in grams, time units at 0.472 seconds.
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